【摘要】 隨著深部真菌感染日益增加及抗真菌藥物的廣泛應(yīng)用,深部真菌耐藥現(xiàn)象也日益突出。近十年以來(lái),雖有較多新型抗真菌感染藥物相繼研發(fā)并應(yīng)用于臨床,但國(guó)內(nèi)外已有較多對(duì)其耐藥的病案報(bào)道。真菌面對(duì)唑類(lèi)等強(qiáng)大的抗真菌藥物也不斷產(chǎn)生著嚴(yán)重的耐藥性,并迅速使一些院內(nèi)真菌感染陷入了無(wú)藥可選的境地。因此,研究真菌的耐藥機(jī)制并尋找新的抗真菌藥物已成當(dāng)務(wù)之急?,F(xiàn)就按照抗真菌藥物分類(lèi),對(duì)近年來(lái)國(guó)內(nèi)外深部真菌感染的耐藥機(jī)制的研究進(jìn)展進(jìn)行綜述,以明確深部真菌耐藥發(fā)生的誘因、機(jī)制,為指導(dǎo)臨床合理使用抗真菌藥物;盡可能減少深部真菌耐藥的發(fā)生及研究新一代抗真菌藥物提供參考。
引用本文: 代華,陳木英,陳立宇,王曉輝. 深部真菌感染的耐藥機(jī)制研究進(jìn)展. 華西醫(yī)學(xué), 2011, 26(1): 142-145. doi: 復(fù)制
1. | 周巧霞, 張經(jīng)碩. 抗真菌藥物及其臨床應(yīng)用進(jìn)展[J]. 抗感染藥物, 2008, 5(1): 11-18. |
2. | Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact[J]. Clin Infect Dis, 2008, 46 (1): 120-128. |
3. | 周露, 斯拉普, 艾白. 抗深部真菌感染藥物的研究進(jìn)展[J]. 藥學(xué)進(jìn)展, 2010, 7(7): 898-900. |
4. | Macbashi K, Niimi M, Kudoh M, et al. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients[J]. Antimicrob Chemother, 2001, 47(5): 527. |
5. | Marr KA, Lyons CN, Ha K, et al. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans[J]. Anti Agents Chemo, 2001, 45(1): 52. |
6. | Micheli M, Bille J, Schueller C, et al. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drugresistance[J]. Mol Microbiol, 2002, 43(5): 1197-1214. |
7. | Mar MC, Felix GR. Antifungal drug resistance to azole and polyenes[J]. Lancet Infect Dis, 2002, 9(2): 550-563. |
8. | Edlind TD, Henry KW, Metera KA, et al. Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance[J]. Med Mycol, 2001, 39(3): 299. |
9. | Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi[J]. Lancet, 2002, 359 (9312): 1135-1144. |
10. | 喬建軍, 劉偉, 李若瑜. 白色念珠菌耐藥的分子研究機(jī)制研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2007, 34(2): 393-396. |
11. | Kohli A, Smriti, Mukhopadhyay K, et al. In vitro low-level resistance to azole in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry[J]. Anti Agents Chemo, 2002, 46(4): 1046. |
12. | Emter R, Heese-Peck A, Kralli A. ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms[J]. FEBS Lett, 2009, 521(1-3): 57-61. |
13. | Espinel-Ingroff A. Mechanisms of resistance to antifungalag-ents: Yeasts and filamentous fungi[J]. Rev Iberoam Micol, 2008, 25(2): 101-106. |
14. | 于維林, 朱元祺, 劉蓬蓬, 等. 唑類(lèi)耐藥白色念珠菌羊毛甾醇14α-去甲基化酶基因的研究[J]. 中國(guó)實(shí)驗(yàn)診斷學(xué), 2009, 10(13): 1357-1359. |
15. | 綦穎, 夏國(guó)光. 侵襲性真菌感染的流行病學(xué)和抗真菌藥物的作用效力[J]. 中華醫(yī)院感染學(xué)雜志, 2009, 19(16): 2217-2220. |
16. | Rock FL, Mao W, Anya YA, et al. An antifungal agentinhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site[J]. Science, 2007, 316(5832): 1759-1761. |
17. | 胡輝, 白色念珠菌生物被膜形成和由其產(chǎn)生的耐藥機(jī)制[J]. 國(guó)外醫(yī)藥?抗生素分冊(cè), 2008, 29(1): 1-6. |
18. | Hope WW, Tabemero L, Denning DW, et al. Molecular mechanisms of primary resistance to flucytosine in Candida albicans[J]. Anti Agents Chemo, 2004, 48: 4377-4386. |
19. | 李婷婷, 朱若華, 蔡光明, 等. 抗真菌藥物的研究進(jìn)展[J]. 中國(guó)藥房, 2010, 21(16): 1533-1536. |
20. | Akings RA. An update on antifungal targets and mechanisms of resistance in Candida albicans[J]. Med Mycol, 2005, 43(4): 285-318. |
21. | 田偉, 王育英. 特比奈芬治療淺部真菌病的臨床應(yīng)用[J]. 臨床皮膚科雜志, 2008, 09(51): 622-623. |
22. | 陳螟, 曹?chē)?guó)穎, 傅得興, 等. 棘白菌素類(lèi)抗真菌藥物的研究進(jìn)展[J]. 中國(guó)新藥雜志, 2007, 16(14): 1082-1083. |
23. | 葉麗娟, 王輅, 朱輝. 抗真菌藥物的作用機(jī)制及真菌耐藥機(jī)制的研究進(jìn)展[J]. 中國(guó)新藥雜志, 2007, 16(14): 1082-1083. |
24. | Katiyar S, Pfaller M, Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility[J]. Antimicrob Agents Chemother, 2006, 50(8): 2892-2894. |
25. | Gardiner RE, Souteropoulos P, Park S, et al. Characterization of Aspergillus fumigatus mutants with reduced suscepti-bility to caspofungin[J]. Med Mycol, 2005, 43(l1): 299-305. |
26. | Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1[J]. Antimicrob Agents Chemother, 2006, 50(6): 2058-2063. |
27. | Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates[J]. Antimicrob Agents Chemother, 2005, 49(8): 3264-3273. |
- 1. 周巧霞, 張經(jīng)碩. 抗真菌藥物及其臨床應(yīng)用進(jìn)展[J]. 抗感染藥物, 2008, 5(1): 11-18.
- 2. Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact[J]. Clin Infect Dis, 2008, 46 (1): 120-128.
- 3. 周露, 斯拉普, 艾白. 抗深部真菌感染藥物的研究進(jìn)展[J]. 藥學(xué)進(jìn)展, 2010, 7(7): 898-900.
- 4. Macbashi K, Niimi M, Kudoh M, et al. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients[J]. Antimicrob Chemother, 2001, 47(5): 527.
- 5. Marr KA, Lyons CN, Ha K, et al. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans[J]. Anti Agents Chemo, 2001, 45(1): 52.
- 6. Micheli M, Bille J, Schueller C, et al. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drugresistance[J]. Mol Microbiol, 2002, 43(5): 1197-1214.
- 7. Mar MC, Felix GR. Antifungal drug resistance to azole and polyenes[J]. Lancet Infect Dis, 2002, 9(2): 550-563.
- 8. Edlind TD, Henry KW, Metera KA, et al. Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance[J]. Med Mycol, 2001, 39(3): 299.
- 9. Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi[J]. Lancet, 2002, 359 (9312): 1135-1144.
- 10. 喬建軍, 劉偉, 李若瑜. 白色念珠菌耐藥的分子研究機(jī)制研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2007, 34(2): 393-396.
- 11. Kohli A, Smriti, Mukhopadhyay K, et al. In vitro low-level resistance to azole in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry[J]. Anti Agents Chemo, 2002, 46(4): 1046.
- 12. Emter R, Heese-Peck A, Kralli A. ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms[J]. FEBS Lett, 2009, 521(1-3): 57-61.
- 13. Espinel-Ingroff A. Mechanisms of resistance to antifungalag-ents: Yeasts and filamentous fungi[J]. Rev Iberoam Micol, 2008, 25(2): 101-106.
- 14. 于維林, 朱元祺, 劉蓬蓬, 等. 唑類(lèi)耐藥白色念珠菌羊毛甾醇14α-去甲基化酶基因的研究[J]. 中國(guó)實(shí)驗(yàn)診斷學(xué), 2009, 10(13): 1357-1359.
- 15. 綦穎, 夏國(guó)光. 侵襲性真菌感染的流行病學(xué)和抗真菌藥物的作用效力[J]. 中華醫(yī)院感染學(xué)雜志, 2009, 19(16): 2217-2220.
- 16. Rock FL, Mao W, Anya YA, et al. An antifungal agentinhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site[J]. Science, 2007, 316(5832): 1759-1761.
- 17. 胡輝, 白色念珠菌生物被膜形成和由其產(chǎn)生的耐藥機(jī)制[J]. 國(guó)外醫(yī)藥?抗生素分冊(cè), 2008, 29(1): 1-6.
- 18. Hope WW, Tabemero L, Denning DW, et al. Molecular mechanisms of primary resistance to flucytosine in Candida albicans[J]. Anti Agents Chemo, 2004, 48: 4377-4386.
- 19. 李婷婷, 朱若華, 蔡光明, 等. 抗真菌藥物的研究進(jìn)展[J]. 中國(guó)藥房, 2010, 21(16): 1533-1536.
- 20. Akings RA. An update on antifungal targets and mechanisms of resistance in Candida albicans[J]. Med Mycol, 2005, 43(4): 285-318.
- 21. 田偉, 王育英. 特比奈芬治療淺部真菌病的臨床應(yīng)用[J]. 臨床皮膚科雜志, 2008, 09(51): 622-623.
- 22. 陳螟, 曹?chē)?guó)穎, 傅得興, 等. 棘白菌素類(lèi)抗真菌藥物的研究進(jìn)展[J]. 中國(guó)新藥雜志, 2007, 16(14): 1082-1083.
- 23. 葉麗娟, 王輅, 朱輝. 抗真菌藥物的作用機(jī)制及真菌耐藥機(jī)制的研究進(jìn)展[J]. 中國(guó)新藥雜志, 2007, 16(14): 1082-1083.
- 24. Katiyar S, Pfaller M, Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility[J]. Antimicrob Agents Chemother, 2006, 50(8): 2892-2894.
- 25. Gardiner RE, Souteropoulos P, Park S, et al. Characterization of Aspergillus fumigatus mutants with reduced suscepti-bility to caspofungin[J]. Med Mycol, 2005, 43(l1): 299-305.
- 26. Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1[J]. Antimicrob Agents Chemother, 2006, 50(6): 2058-2063.
- 27. Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates[J]. Antimicrob Agents Chemother, 2005, 49(8): 3264-3273.