• 中國醫(yī)科大學(xué)附屬盛京醫(yī)院膽道、疝及減肥外科(遼寧沈陽 110004);

目的  介紹胃腸道營養(yǎng)物質(zhì)代謝與胰高血糖素樣態(tài)-1(GLP-1)水平關(guān)系的研究現(xiàn)狀。
方法  收集近年來國內(nèi)、外有關(guān)胃腸道營養(yǎng)物質(zhì)代謝與GLP-1水平關(guān)系的文獻(xiàn)并作綜述。
結(jié)果  GLP-1影響胰島素的分泌及其敏感性,在糖代謝恢復(fù)中發(fā)揮主導(dǎo)作用。胃腸道營養(yǎng)物質(zhì)代謝影響GLP-1水平。胃轉(zhuǎn)流術(shù)(GBP)治療2型糖尿病(T2DM)可能主要與其影響GLP-1水平有關(guān)。
結(jié)論  胃腸道營養(yǎng)物質(zhì)代謝調(diào)控GLP-1水平在GBP治療T2DM 中起了重要作用,相應(yīng)的深入研究將為T2DM的治療開辟一個新的領(lǐng)域。

引用本文: 馮瀟,王勇. 胃腸道營養(yǎng)物質(zhì)代謝與胰高血糖素樣肽-1水平改變△. 中國普外基礎(chǔ)與臨床雜志, 2012, 19(12): 1286-1290. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國普外基礎(chǔ)與臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12):1090-1101.
2. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysialogy[J]. JAMA, 2009, 301(20): 2129-2140.
3. Detournay B, Cros S, Charbonnel B, et al. Managing type2 diabetes in France: the ECODIA surgery[J]. DiabetesMetab, 2000, 26(5): 363-369.
4. Kirchner H, Guijarro A, Meguid MM. Is a model useful in exploring the catabolic mechanisms of weight loss after gastric bypass in humans[J]. Curr Opin Clin Nutr Metab Care, 2007, 10(4):463-474.
5. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2000[J]. JAMA, 2002, 288(14):1723-1727.
6. Martins C, Robertson MD, Morgan LM. Effects of exercise and restrained eating behaviour on appetite control[J]. Proc Nutr Soc, 2008, 67(1):28-41.
7. Rubino F, Gagner M. Potential of surgery for curing type 2diabetes mellitus[J]. Ann Surg, 2002, 236(5):554-559.
8. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery:a systematic review and meta-analysis[J]. JAMA, 2004, 292(14):1724-1737.
9. Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulinresistance following bariatric surgery:role of caloric restriction and weight loss[J]. Obes Surg, 2005, 15(4):462-473.
10. Zhang GY, Wang TT, Cheng ZQ, et al. Resolution of diabetes mellitus by ileal transposition compared with biliopancreaticdiversion in a nonobese animal model of type 2 diabetes[J]. Can J Surg, 2011, 54(4):243-251.
11. DeMaria EJ, Sugerman HJ, Kellum JM, et al. Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity[J]. Ann Surg, 2002, 235(5):640-645.
12. Chai F, Wang Y, Zhou Y, et al. Adiponectin downregulateshyperglycemia and reduces pancreatic islet apoptosis after Roux-en-Y gastric bypass surgery[J]. Obes Surg, 2011, 21(6):768-773.
13. Umeda LM, Silva EA, Carneiro G, et al. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients[J]. Obes Surg, 2011, 21(7):896-901.
14. Laferrère B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes[J]. Diabetes Care, 2007, 30(7):1709-1716.
15. Wang Y, Liu J. Sleeve gastrectomy relieves steatohepatitis in high-fat-diet-induced obese rats[J]. Obes Surg, 2009, 19(7):921-925.
16. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery[J]. N Engl J Med, 2007, 357(8):753-761.
17. Wickremesekera K, Miller G, Naotunne TD, et al. Loss ofinsulin resistance after Roux-en-Y gastric bypass surgery:a time course study[J]. Obes Surg, 2005, 15(4):474-481.
18. Clements RH, Gonzalez QH, Long CI, et al. Hormonal changes after Roux-en-Y gastric bypass for morbid obesity and the control of type-Ⅱ diabetes mellitus[J]. Am Surg, 2004, 70(1):1-5.
19. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism[J]. Ann Surg, 2004, 240(2):236-242.
20. Liu Y, Zhou Y, Wang Y, et al. Roux-en-Y gastric bypass-induced improvement of glucose tolerance and insulin resistance in type 2 diabetic rats are mediated by glucagon-like peptide-1[J]. Obes Surg, 2011, 21(9):1424-1431.
21. Zhou H, Yamada Y, Tsukiyama K, et al. Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action[J]. Biochem Biophys Res Commun, 2005, 335(3):937-942.
22. Rasouli M, Ahmad Z, Omar AR, et al. Engineering an L-cell line that expresses insulin under the control of the glucagon-like peptide-1 promoter for diabetes treatment[J]. BMC Biotechnol, 2011, 11:99.
23. Bose M, Oliván B, Teixeira J, et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery:what are the evidence?[J]. Obes Surg, 2009, 19(2):217-229.
24. Cho YM, Kieffer TJ. New aspects of an old drug:metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser[J]. Diabetologia, 2011, 54(2):219-222.
25. Bai J, Wang Y, Liu Y, et al. Sleeve gastrectomy prevents lipoprotein receptor-1 expression in aortas of obese rats[J]. World J Gastroenterol, 2011, 17(32):3739-3744.
26. Li SQ, Zhou Y, Wang Y, et al. Upregulation of IRS-1 expression in goto-kakizaki rats following Roux-en-Y gastric bypass surgery:resolution of type 2 diabetes?[J]. Tohoku J Exp Med, 2011, 225(3):179-186.
27. Evans S, Pamuklar Z, Rosko J, et al. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction[J]. Surg Endosc, 2012, 26(4):1086-1094.
28. Flint A, Kapitza C, Hindsberger C, et al. The once-daily humanglucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients[J]. Adv Ther, 2011, 28(3):213-226.
29. Koliaki C, Doupis J. Incretin-based therapy:a powerful and promising weapon in the treatment of type 2 diabetes mellitus[J]. Diabetes Ther, 2011, 2(2):101-121.
30. Lee HC, Kim MK, Kwon HS, et al. Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients[J]. Obes Surg, 2010, 20(11):1530-1535.
31. Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery[J]. Obes Surg, 2004, 14(6):840-848.
32. Thaler JP, Cummings DE. Minireview:Hormonal and metabolicmechanisms of diabetes remission after gastrointestinal surgery[J]. Endocrinology, 2009, 150(6):2518-2525.
33. Lee WJ, Lee YC, Ser KH, et al. Improvement of insulin resistance after obesity surgery:a comparison of gastric banding and bypass procedures[J]. Obes Surg, 2008, l8(9):1119-1125.
34. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diametes:a new perspective for an old disease[J]. Ann Surg, 2004, 239(1):1-11.
35. Wang Y, Liu J. Combination of bypassing stomach and vagus dissection in high-fat diet-induced obese rats——a long-terminvestigation[J]. Obes Surg, 2010, 20(3):375-379.
36. Rodrigo L, José P, Marcos T, et al. Incretins:clinical physiology and bariatric surgery——correlating the entero-endocrine system and a potentially anti-dysmetabolic procedure[J]. Obes Surg, 2007, 17(5):573-580.
37. Wang Y, Liu JG. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy[J]. Obes Surg, 2009, 19(3):357-362.
38. Cai D, Yuan M, Frantz DF, et a1. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB[J]. Nat Med, 2005, 11(2):183-190.
39. Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver[J]. Diabetes, 2005, 54(12):3458-3465.
40. Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121):860-867.
41. Moon MJ, Kim HY, Park S, et al. Insulin contributes to fine-tuning of the pancreatic beta-cell response to glucagon-like peptide-1[J]. Mol Cells, 2011, 32(4):389-395.
42. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of proximal small intestine in the pathophysiology of type 2 diabetes[J]. Ann Surg, 2006, 244(5):741-749.
43. Holt SH, Brand-Miller JC, Stitt PA. The effects of equal-energy portions of different breads on blood glucose levels, feelings of fullness and subsequent food intake[J]. J Am Diet Assoc, 2001, 101(7):767-773.
44. Anini Y, Fu CX, Cuber JC, et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat[J]. Pflugers Arch, 1999, 438(3):299-306.
45. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1(7-36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man:acute post-prandial and 24-h secretion patterns[J]. J Endocrinol, 1993, 138(1):159-166.
46. Gniuli D, Calcagno A, Dalla Libera L, et al. High-fat feedingstimulates endocrine, glucose-dependent insulinotropic polypeptide(GIP)-expressing cell hyperplasia in the duodenum of Wistar rats[J]. Diabetologia, 2010, 53(10):2233-2240.
47. Kaji I, Karaki S, Tanaka R, et al. Density distribution of free fattyacid receptor 2(FFA2)-expressing and GLP-1-producing enteroen-docrine L cells in human and rat lower intestine, and increased cellnumbers after ingestion of fructo-oligosaccharide[J]. J Mol Histol, 2011, 42(1):27-38.
48. Lavin JH, Wittert GA, Andrews J, et al. Interaction of insulin, glucagon-like peptide-1, gastric inhibitory polypeptide, andappetite in response to intraduodenal carbohydrate[J]. Am J Clin Nutr, 1998, 68(3):591-598.
49. Younes A, Brubaker PL. Glucagon-like peptides:GLP-1 and GLP-2//Henry HL, Norman AW. ed. Encyclopedia of Hormones[M]. San Diego, EUA:Academic Press, 2003:55-62.
50. Morínigo R, Moizé V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects[J]. J Clin Endocrinol Metab, 2006, 91(5):1735-1740.
51. Mochida T, Hira T, Hara H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-Ⅳactivity in rats[J]. Endocrinology, 2010, 151(7):3095-3104.
52. Tahrani AA, Piya MK, Barnett AH. Saxagliptin:a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Adv Ther, 2009, 26(3):249-262.
53. Dumoulin V, Moro F, Barcelo A, et al. Peptide YY, glucagon-likepeptide-1, and neurotensin responses to luminal factors in theisolated vascularly perfused rat ileum[J]. Endocrinology, 1998, 139(9):3780-3786.
54. Cordier-Bussat M, Bernard C, Levenez F, et al. Peptones stimulate both the secretion of the incretin hormone glucagon-likepeptide-1 and the transcription of the proglucagon gene[J]. Diabetes, 1998, 47(7):1038-1045.
55. Hall WL, Millward DJ, Long SJ, et al. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite[J]. Br J Nutr, 2003, 89(2):239-248.
56. Reimer RA, Russell JC. Glucose tolerance, lipids, and GLP-1secretion in JCR:LA-cp rats fed a high protein fiber diet[J]. Obesity (Silver Spring), 2008, 16(1):40-46.
57. Greenfield JR, Farooqi IS, Keogh JM, et al. Oral glutamineincrease circulating glucagons-like peptide-1, glucagon, andinsulin concentration in lean, obsese, and type 2 diabetic subjects[J]. Am J Clin Nutr, 2009, 89(1):106-113.
58. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide-1 and energy metabolism by inulin and oligofructose:experimental data[J]. J Nutr, 2007, 137(11 Suppl):2547S-2551S.
59. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats[J]. Br J Nutr, 2004, 92(3):521-526.
  1. 1. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12):1090-1101.
  2. 2. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysialogy[J]. JAMA, 2009, 301(20): 2129-2140.
  3. 3. Detournay B, Cros S, Charbonnel B, et al. Managing type2 diabetes in France: the ECODIA surgery[J]. DiabetesMetab, 2000, 26(5): 363-369.
  4. 4. Kirchner H, Guijarro A, Meguid MM. Is a model useful in exploring the catabolic mechanisms of weight loss after gastric bypass in humans[J]. Curr Opin Clin Nutr Metab Care, 2007, 10(4):463-474.
  5. 5. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2000[J]. JAMA, 2002, 288(14):1723-1727.
  6. 6. Martins C, Robertson MD, Morgan LM. Effects of exercise and restrained eating behaviour on appetite control[J]. Proc Nutr Soc, 2008, 67(1):28-41.
  7. 7. Rubino F, Gagner M. Potential of surgery for curing type 2diabetes mellitus[J]. Ann Surg, 2002, 236(5):554-559.
  8. 8. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery:a systematic review and meta-analysis[J]. JAMA, 2004, 292(14):1724-1737.
  9. 9. Gumbs AA, Modlin IM, Ballantyne GH. Changes in insulinresistance following bariatric surgery:role of caloric restriction and weight loss[J]. Obes Surg, 2005, 15(4):462-473.
  10. 10. Zhang GY, Wang TT, Cheng ZQ, et al. Resolution of diabetes mellitus by ileal transposition compared with biliopancreaticdiversion in a nonobese animal model of type 2 diabetes[J]. Can J Surg, 2011, 54(4):243-251.
  11. 11. DeMaria EJ, Sugerman HJ, Kellum JM, et al. Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity[J]. Ann Surg, 2002, 235(5):640-645.
  12. 12. Chai F, Wang Y, Zhou Y, et al. Adiponectin downregulateshyperglycemia and reduces pancreatic islet apoptosis after Roux-en-Y gastric bypass surgery[J]. Obes Surg, 2011, 21(6):768-773.
  13. 13. Umeda LM, Silva EA, Carneiro G, et al. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients[J]. Obes Surg, 2011, 21(7):896-901.
  14. 14. Laferrère B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes[J]. Diabetes Care, 2007, 30(7):1709-1716.
  15. 15. Wang Y, Liu J. Sleeve gastrectomy relieves steatohepatitis in high-fat-diet-induced obese rats[J]. Obes Surg, 2009, 19(7):921-925.
  16. 16. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery[J]. N Engl J Med, 2007, 357(8):753-761.
  17. 17. Wickremesekera K, Miller G, Naotunne TD, et al. Loss ofinsulin resistance after Roux-en-Y gastric bypass surgery:a time course study[J]. Obes Surg, 2005, 15(4):474-481.
  18. 18. Clements RH, Gonzalez QH, Long CI, et al. Hormonal changes after Roux-en-Y gastric bypass for morbid obesity and the control of type-Ⅱ diabetes mellitus[J]. Am Surg, 2004, 70(1):1-5.
  19. 19. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism[J]. Ann Surg, 2004, 240(2):236-242.
  20. 20. Liu Y, Zhou Y, Wang Y, et al. Roux-en-Y gastric bypass-induced improvement of glucose tolerance and insulin resistance in type 2 diabetic rats are mediated by glucagon-like peptide-1[J]. Obes Surg, 2011, 21(9):1424-1431.
  21. 21. Zhou H, Yamada Y, Tsukiyama K, et al. Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action[J]. Biochem Biophys Res Commun, 2005, 335(3):937-942.
  22. 22. Rasouli M, Ahmad Z, Omar AR, et al. Engineering an L-cell line that expresses insulin under the control of the glucagon-like peptide-1 promoter for diabetes treatment[J]. BMC Biotechnol, 2011, 11:99.
  23. 23. Bose M, Oliván B, Teixeira J, et al. Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery:what are the evidence?[J]. Obes Surg, 2009, 19(2):217-229.
  24. 24. Cho YM, Kieffer TJ. New aspects of an old drug:metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser[J]. Diabetologia, 2011, 54(2):219-222.
  25. 25. Bai J, Wang Y, Liu Y, et al. Sleeve gastrectomy prevents lipoprotein receptor-1 expression in aortas of obese rats[J]. World J Gastroenterol, 2011, 17(32):3739-3744.
  26. 26. Li SQ, Zhou Y, Wang Y, et al. Upregulation of IRS-1 expression in goto-kakizaki rats following Roux-en-Y gastric bypass surgery:resolution of type 2 diabetes?[J]. Tohoku J Exp Med, 2011, 225(3):179-186.
  27. 27. Evans S, Pamuklar Z, Rosko J, et al. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction[J]. Surg Endosc, 2012, 26(4):1086-1094.
  28. 28. Flint A, Kapitza C, Hindsberger C, et al. The once-daily humanglucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients[J]. Adv Ther, 2011, 28(3):213-226.
  29. 29. Koliaki C, Doupis J. Incretin-based therapy:a powerful and promising weapon in the treatment of type 2 diabetes mellitus[J]. Diabetes Ther, 2011, 2(2):101-121.
  30. 30. Lee HC, Kim MK, Kwon HS, et al. Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients[J]. Obes Surg, 2010, 20(11):1530-1535.
  31. 31. Patriti A, Facchiano E, Sanna A, et al. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery[J]. Obes Surg, 2004, 14(6):840-848.
  32. 32. Thaler JP, Cummings DE. Minireview:Hormonal and metabolicmechanisms of diabetes remission after gastrointestinal surgery[J]. Endocrinology, 2009, 150(6):2518-2525.
  33. 33. Lee WJ, Lee YC, Ser KH, et al. Improvement of insulin resistance after obesity surgery:a comparison of gastric banding and bypass procedures[J]. Obes Surg, 2008, l8(9):1119-1125.
  34. 34. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diametes:a new perspective for an old disease[J]. Ann Surg, 2004, 239(1):1-11.
  35. 35. Wang Y, Liu J. Combination of bypassing stomach and vagus dissection in high-fat diet-induced obese rats——a long-terminvestigation[J]. Obes Surg, 2010, 20(3):375-379.
  36. 36. Rodrigo L, José P, Marcos T, et al. Incretins:clinical physiology and bariatric surgery——correlating the entero-endocrine system and a potentially anti-dysmetabolic procedure[J]. Obes Surg, 2007, 17(5):573-580.
  37. 37. Wang Y, Liu JG. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy[J]. Obes Surg, 2009, 19(3):357-362.
  38. 38. Cai D, Yuan M, Frantz DF, et a1. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB[J]. Nat Med, 2005, 11(2):183-190.
  39. 39. Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver[J]. Diabetes, 2005, 54(12):3458-3465.
  40. 40. Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121):860-867.
  41. 41. Moon MJ, Kim HY, Park S, et al. Insulin contributes to fine-tuning of the pancreatic beta-cell response to glucagon-like peptide-1[J]. Mol Cells, 2011, 32(4):389-395.
  42. 42. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of proximal small intestine in the pathophysiology of type 2 diabetes[J]. Ann Surg, 2006, 244(5):741-749.
  43. 43. Holt SH, Brand-Miller JC, Stitt PA. The effects of equal-energy portions of different breads on blood glucose levels, feelings of fullness and subsequent food intake[J]. J Am Diet Assoc, 2001, 101(7):767-773.
  44. 44. Anini Y, Fu CX, Cuber JC, et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat[J]. Pflugers Arch, 1999, 438(3):299-306.
  45. 45. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1(7-36) amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man:acute post-prandial and 24-h secretion patterns[J]. J Endocrinol, 1993, 138(1):159-166.
  46. 46. Gniuli D, Calcagno A, Dalla Libera L, et al. High-fat feedingstimulates endocrine, glucose-dependent insulinotropic polypeptide(GIP)-expressing cell hyperplasia in the duodenum of Wistar rats[J]. Diabetologia, 2010, 53(10):2233-2240.
  47. 47. Kaji I, Karaki S, Tanaka R, et al. Density distribution of free fattyacid receptor 2(FFA2)-expressing and GLP-1-producing enteroen-docrine L cells in human and rat lower intestine, and increased cellnumbers after ingestion of fructo-oligosaccharide[J]. J Mol Histol, 2011, 42(1):27-38.
  48. 48. Lavin JH, Wittert GA, Andrews J, et al. Interaction of insulin, glucagon-like peptide-1, gastric inhibitory polypeptide, andappetite in response to intraduodenal carbohydrate[J]. Am J Clin Nutr, 1998, 68(3):591-598.
  49. 49. Younes A, Brubaker PL. Glucagon-like peptides:GLP-1 and GLP-2//Henry HL, Norman AW. ed. Encyclopedia of Hormones[M]. San Diego, EUA:Academic Press, 2003:55-62.
  50. 50. Morínigo R, Moizé V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects[J]. J Clin Endocrinol Metab, 2006, 91(5):1735-1740.
  51. 51. Mochida T, Hira T, Hara H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-Ⅳactivity in rats[J]. Endocrinology, 2010, 151(7):3095-3104.
  52. 52. Tahrani AA, Piya MK, Barnett AH. Saxagliptin:a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus[J]. Adv Ther, 2009, 26(3):249-262.
  53. 53. Dumoulin V, Moro F, Barcelo A, et al. Peptide YY, glucagon-likepeptide-1, and neurotensin responses to luminal factors in theisolated vascularly perfused rat ileum[J]. Endocrinology, 1998, 139(9):3780-3786.
  54. 54. Cordier-Bussat M, Bernard C, Levenez F, et al. Peptones stimulate both the secretion of the incretin hormone glucagon-likepeptide-1 and the transcription of the proglucagon gene[J]. Diabetes, 1998, 47(7):1038-1045.
  55. 55. Hall WL, Millward DJ, Long SJ, et al. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite[J]. Br J Nutr, 2003, 89(2):239-248.
  56. 56. Reimer RA, Russell JC. Glucose tolerance, lipids, and GLP-1secretion in JCR:LA-cp rats fed a high protein fiber diet[J]. Obesity (Silver Spring), 2008, 16(1):40-46.
  57. 57. Greenfield JR, Farooqi IS, Keogh JM, et al. Oral glutamineincrease circulating glucagons-like peptide-1, glucagon, andinsulin concentration in lean, obsese, and type 2 diabetic subjects[J]. Am J Clin Nutr, 2009, 89(1):106-113.
  58. 58. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide-1 and energy metabolism by inulin and oligofructose:experimental data[J]. J Nutr, 2007, 137(11 Suppl):2547S-2551S.
  59. 59. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats[J]. Br J Nutr, 2004, 92(3):521-526.