• 解放軍總醫(yī)院南樓呼吸科( 北京 100853)通訊作者: 俞森洋, E-mail: senyangyu@ sina. com;

目的  建立呼吸機(jī)所致肺損傷家兔模型并進(jìn)行評(píng)價(jià)。方法  40 只家兔隨機(jī)分為3 組:常規(guī)8 mL/kg 潮氣量組( VT8 組) 、25 mL/kg 大潮氣量組( VT25 組) 、40 mL/kg 大潮氣量組( VT40 組) ;除了VT8 組外, VT25 和VT40 組內(nèi)再分為2 h 和4 h 機(jī)械通氣兩個(gè)亞組。監(jiān)測(cè)通氣過(guò)程中的動(dòng)脈血?dú)?、肺機(jī)械力學(xué)和血流動(dòng)力學(xué)變化; 肺組織HE 染色觀察肺損傷情況; 測(cè)定肺濕/ 干比、BALF 蛋白濃度, 計(jì)數(shù)BALF中有核細(xì)胞和中性粒細(xì)胞數(shù)目。比較不同通氣條件下家兔的肺損傷程度和重要的生理參數(shù), 確定復(fù)制呼吸機(jī)所致肺損傷家兔模型的最適條件。結(jié)果  與VT8 組相比較, 大潮氣量通氣組的肺損傷評(píng)分顯著升高, 其中以VT40 通氣4 h亞組最高。VT40 組鏡下可見(jiàn)肺泡結(jié)構(gòu)變形, 肺間質(zhì)及肺泡腔滲出, 炎癥細(xì)胞浸潤(rùn), 部分肺組織實(shí)變及肺泡出血。VT25 組則主要表現(xiàn)為肺間隔增厚, 炎癥細(xì)胞浸潤(rùn), 肺泡腔內(nèi)滲出較少。隨通氣時(shí)間延長(zhǎng), 大潮氣量通氣組的PaO2 /FiO2 呈下降趨勢(shì), 其中VT40 組在通氣3 h(  lt; 300 mm Hg) 已符合急性肺損傷標(biāo)準(zhǔn), 而VT25 組在各時(shí)間點(diǎn)PaO2 /FiO2 均在300 mmHg 以上。大潮氣量通氣組的肺濕/ 干比、BALF 蛋白濃度及細(xì)胞數(shù)較VT8 組有顯著升高, 并隨通氣時(shí)間延長(zhǎng)而增加, 以VT40 通氣4 h亞組最高。結(jié)論  使用潮氣量40 mL/kg 通氣4 h 能夠復(fù)制出理想的呼吸機(jī)所致肺損傷家兔模型。

引用本文: 安莉,周美玲,秦雪冰,劉慶輝,劉長(zhǎng)庭,俞森洋. 呼吸機(jī)所致肺損傷家兔模型的建立與評(píng)價(jià). 中國(guó)呼吸與危重監(jiān)護(hù)雜志, 2010, 9(2): 163-167. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)呼吸與危重監(jiān)護(hù)雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Torsten C, Schreiber MD, Walter A, et al. Lung injury caused by mechanical ventilation. Contem Crit Care, 2005, 3: 1 -12 .
2. Sinclair SE, Altemeier WA, Matute-Bello G, et al. Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med, 2004 , 32 : 2496-2501.
3. Sinclair SE, Kregenow DA, Lamm WJ, et al. Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med, 2002 , 166: 403-408.
4. Wilson MR, Choudhury S, Goddard ME, et al. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. J Appl Physiol, 2003 , 95 : 1385 -1393.
5. Verbrugge SJ, Uhlig S, Neggers SJ, et al. Different ventilation strategies affect lung function but do not increase tumor necrosis factor-alpha and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology, 1999, 91 : 1834-1843.
6. Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med, 1999, 160: 109-116 .
7. DiRocco JD, Pavone LA, Carney DE, et al. Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med, 2006 ,32: 140-148 .
8. Altemeier WA, Matute-Bello G, Frevert CW, et al. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol, 2004, 287 : L533-L542.
9. Walder B, Fontao E, Totsch M, et al. Time and tidal volumedependent ventilator-induced lung injury in healthy rats. Eur J Anaesthesiol, 2005, 22: 785 -794.
10. Egan EA, Nelson RM, Olver RE. Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol, 1976 , 260: 409-424.
11. Parker JC, Townsley MI, Rippe B, et al. Increased microvascular permeability in dog lungs due to high peak airway pressures. JAppl Physiol, 1984 , 57: 1809-1816.
12. Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med, 2003 , 167: 1467-1471.
  1. 1. Torsten C, Schreiber MD, Walter A, et al. Lung injury caused by mechanical ventilation. Contem Crit Care, 2005, 3: 1 -12 .
  2. 2. Sinclair SE, Altemeier WA, Matute-Bello G, et al. Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med, 2004 , 32 : 2496-2501.
  3. 3. Sinclair SE, Kregenow DA, Lamm WJ, et al. Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med, 2002 , 166: 403-408.
  4. 4. Wilson MR, Choudhury S, Goddard ME, et al. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. J Appl Physiol, 2003 , 95 : 1385 -1393.
  5. 5. Verbrugge SJ, Uhlig S, Neggers SJ, et al. Different ventilation strategies affect lung function but do not increase tumor necrosis factor-alpha and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology, 1999, 91 : 1834-1843.
  6. 6. Chiumello D, Pristine G, Slutsky AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med, 1999, 160: 109-116 .
  7. 7. DiRocco JD, Pavone LA, Carney DE, et al. Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med, 2006 ,32: 140-148 .
  8. 8. Altemeier WA, Matute-Bello G, Frevert CW, et al. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol, 2004, 287 : L533-L542.
  9. 9. Walder B, Fontao E, Totsch M, et al. Time and tidal volumedependent ventilator-induced lung injury in healthy rats. Eur J Anaesthesiol, 2005, 22: 785 -794.
  10. 10. Egan EA, Nelson RM, Olver RE. Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol, 1976 , 260: 409-424.
  11. 11. Parker JC, Townsley MI, Rippe B, et al. Increased microvascular permeability in dog lungs due to high peak airway pressures. JAppl Physiol, 1984 , 57: 1809-1816.
  12. 12. Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med, 2003 , 167: 1467-1471.