• 首都醫(yī)科大學附屬北京安貞醫(yī)院 心外科,北京 100029;

心肌組織工程技術的問世良好地解決了心肌梗死后組織細胞移植過程中出現(xiàn)的一系列問題,同時也建立為選擇更好材料及更好移植手段的技術平臺。但無論是動物實驗研究還是最近的臨床試驗都表明,目前細胞移植手段仍存在不少缺陷,主要在于優(yōu)良種子細胞的缺乏以及移植后細胞的低生存率和低分化率。在這種背景下,作為心肌組織工程支架材料的細胞外基質(zhì)(extracellular matrix,ECM)越來越受到人們的關注和重視,成為近些年來醫(yī)學研究的前沿和熱點。而ECM也不再僅僅被理解為一種支架材料或是一種組織,而是能為細胞提供必要信號、影響細胞內(nèi)增殖、分化和代謝重要途徑的關鍵角色。ECM相關模型大致可分為以下幾類:天然生物支架材料、人工合成高分子支架材料以及物理和生物學特性更加平衡的復合支架材料。我們對近幾年心肌組織工程領域ECM方面的研究進展及ECM的材料進行綜述。

引用本文: 李獻帥,穆軍升. 心肌組織工程細胞外基質(zhì)的研究進展. 中國胸心血管外科臨床雜志, 2012, 19(5): 555-558. doi: 復制

版權(quán)信息: ?四川大學華西醫(yī)院華西期刊社《中國胸心血管外科臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1.  Schussler O, Chachques JC, Mesana TG, et al. 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc Thorac Ann, 2010, 18 (2):188-198.
2.  Barsotti MC, Felice F, Balbarini A, et al. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Biochem, 2011, 58 (5):301-310.
3.  Ahmed TE, Dare EV, Hincke M. Fibrin:a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev, 2008, 14 (2):199-215.
4.  Kofidis T, Lenz A, Boublik J, et al. Bioartificial grafts for transmural myocardial restoration:a new cardiovascular tissue culture concept. Eur J Cardiothorac Surg, 2003, 24 (6):906-911.
5.  Li RK, Jia ZQ, Weisel RD, et al. Survival and function of bioengineered cardiac grafts. Circulation, 1999, 100 (19 Suppl):Ⅱ63-Ⅱ 69.
6.  Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res, 2002, 90 (2):223-230.
7.  Stern R, Asari AA, Sugahara KN. Hyaluronan fragments:an information-rich system. Eur J Cell Biol, 2006, 85 (8):699-715.
8.  Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 2006, 24 (4):928-935.
9.  Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts:A new approach to repair the infarcted myocardium? Circulation, 2000, 102 (19 Suppl 3):Ⅲ56-Ⅲ61.
10.  Muller FA, Lenka M, Ingo H, et al. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, 2006, 27 (21):3955-3963.
11.  Emilia E, Bien H, Yin LH, et al. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials, 2004, 25 (26):5753-5762.
12.  Matis M, Viljanto J, Hurme T, et al. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials, 1999, 20 (21):1989-1995.
13.  Vanore M, Chahory S, Payen G, et al. Surgical repair of deep melting ulcers with porcine small intestinal submucosa (SIS) graft in dogs and Cats. Vet Ophthalmol, 2007, 10 (2):93-99.
14.  Robinson KA, Li J, Mathison M, et al. Extracellular matrix scaffold for cardiac repair. Circulation, 2005, 112 (9 Suppl):I135- I143.
15.  Singelyn JM, Dequach JA, Seif-Naraghi SB, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 2009, 30 (29):5409-5416.
16.  Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix:using Nature’s platform to engineer a bioartificial heart. Nat Med, 2008, 14 (2):213-221.
17.  Haraguchi Y, Shimizu T, Yamato M, et al. Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract, 2011, 845170.
18.  Matsuda N, Tatsuya S, Masayuki Y, et al. Tissue engineering based on cell sheet technology. Advanced Materials, 2007, 19 (20):3089-3099.
19.  Masuda S, Shimizu T, Yamato M, et al. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev, 2008,60 (2):277-285.
20.  Sekine H, Shimizu T, Kosaka S, et al. Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant, 2006, 25 (3):324-332.
21.  Miyagawa S, Saito A, Sakaguchi T, et al. Impaired myocardium regeneration with skeletal cell sheets—— a preclinical trial for tissue-engineered regeneration therapy. Transplantation, 2010, 90 (4):364-372.
22.  Hida N, Nishiyama N, Miyoshi S, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells, 2008, 26 (7):1695-1704.
23.  Radisic M, Park H, Martens TP, et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A, 2008, 86 (3):713-724.
24.  Singh D, Nayak V, Kumar A. Proliferation of myoblast skeletal cells on three-dimensional supermacroporous cryogels. Int J Biol Sci, 2010, 6 (4):371-381.
25.  Jin J, Jeong SI, Shin YM, et al. Transplantation of mesenchymal stem cells within a poly (lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail, 2009,11 (2):147-153.
26.  Lee EJ, Vunjak-Novakovic G, Wang Y, et al. A biocompatible endothelial cell delivery system for in vitro tissue engineering. Cell Transplant, 2009, 18 (7):731-743.
27.  Heydarkhan-Hagvall S, Choi CH, Dunn J, et al. Influence of systematically varied nano-scale topography on cell morphology and adhesion. Cell Commun Adhes, 2007, 14 (5):181-194.
28.  Akhyari P, Kamiya H, Haverich A, et al. Myocardial tissue engineering:the extracellular matrix.Eur J Cardiothorac Surg, 2008,34 (2):229-241.
29.  Boublik J, Park H, Radisic M, et al. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng, 2005, 11 (7-8):1122-1132.
30.  Ashton RS, Akhilesh B, Supriya P, et al. Scaffolds based on degradable alginate hydrogels and poly (lactide-co-glycolide) microspheres for stem cell culture. Biomaterials, 2007, 28 (36):5518-5525.
  1. 1.  Schussler O, Chachques JC, Mesana TG, et al. 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc Thorac Ann, 2010, 18 (2):188-198.
  2. 2.  Barsotti MC, Felice F, Balbarini A, et al. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Biochem, 2011, 58 (5):301-310.
  3. 3.  Ahmed TE, Dare EV, Hincke M. Fibrin:a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev, 2008, 14 (2):199-215.
  4. 4.  Kofidis T, Lenz A, Boublik J, et al. Bioartificial grafts for transmural myocardial restoration:a new cardiovascular tissue culture concept. Eur J Cardiothorac Surg, 2003, 24 (6):906-911.
  5. 5.  Li RK, Jia ZQ, Weisel RD, et al. Survival and function of bioengineered cardiac grafts. Circulation, 1999, 100 (19 Suppl):Ⅱ63-Ⅱ 69.
  6. 6.  Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res, 2002, 90 (2):223-230.
  7. 7.  Stern R, Asari AA, Sugahara KN. Hyaluronan fragments:an information-rich system. Eur J Cell Biol, 2006, 85 (8):699-715.
  8. 8.  Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 2006, 24 (4):928-935.
  9. 9.  Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts:A new approach to repair the infarcted myocardium? Circulation, 2000, 102 (19 Suppl 3):Ⅲ56-Ⅲ61.
  10. 10.  Muller FA, Lenka M, Ingo H, et al. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, 2006, 27 (21):3955-3963.
  11. 11.  Emilia E, Bien H, Yin LH, et al. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials, 2004, 25 (26):5753-5762.
  12. 12.  Matis M, Viljanto J, Hurme T, et al. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials, 1999, 20 (21):1989-1995.
  13. 13.  Vanore M, Chahory S, Payen G, et al. Surgical repair of deep melting ulcers with porcine small intestinal submucosa (SIS) graft in dogs and Cats. Vet Ophthalmol, 2007, 10 (2):93-99.
  14. 14.  Robinson KA, Li J, Mathison M, et al. Extracellular matrix scaffold for cardiac repair. Circulation, 2005, 112 (9 Suppl):I135- I143.
  15. 15.  Singelyn JM, Dequach JA, Seif-Naraghi SB, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials, 2009, 30 (29):5409-5416.
  16. 16.  Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix:using Nature’s platform to engineer a bioartificial heart. Nat Med, 2008, 14 (2):213-221.
  17. 17.  Haraguchi Y, Shimizu T, Yamato M, et al. Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract, 2011, 845170.
  18. 18.  Matsuda N, Tatsuya S, Masayuki Y, et al. Tissue engineering based on cell sheet technology. Advanced Materials, 2007, 19 (20):3089-3099.
  19. 19.  Masuda S, Shimizu T, Yamato M, et al. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev, 2008,60 (2):277-285.
  20. 20.  Sekine H, Shimizu T, Kosaka S, et al. Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant, 2006, 25 (3):324-332.
  21. 21.  Miyagawa S, Saito A, Sakaguchi T, et al. Impaired myocardium regeneration with skeletal cell sheets—— a preclinical trial for tissue-engineered regeneration therapy. Transplantation, 2010, 90 (4):364-372.
  22. 22.  Hida N, Nishiyama N, Miyoshi S, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells, 2008, 26 (7):1695-1704.
  23. 23.  Radisic M, Park H, Martens TP, et al. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A, 2008, 86 (3):713-724.
  24. 24.  Singh D, Nayak V, Kumar A. Proliferation of myoblast skeletal cells on three-dimensional supermacroporous cryogels. Int J Biol Sci, 2010, 6 (4):371-381.
  25. 25.  Jin J, Jeong SI, Shin YM, et al. Transplantation of mesenchymal stem cells within a poly (lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail, 2009,11 (2):147-153.
  26. 26.  Lee EJ, Vunjak-Novakovic G, Wang Y, et al. A biocompatible endothelial cell delivery system for in vitro tissue engineering. Cell Transplant, 2009, 18 (7):731-743.
  27. 27.  Heydarkhan-Hagvall S, Choi CH, Dunn J, et al. Influence of systematically varied nano-scale topography on cell morphology and adhesion. Cell Commun Adhes, 2007, 14 (5):181-194.
  28. 28.  Akhyari P, Kamiya H, Haverich A, et al. Myocardial tissue engineering:the extracellular matrix.Eur J Cardiothorac Surg, 2008,34 (2):229-241.
  29. 29.  Boublik J, Park H, Radisic M, et al. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng, 2005, 11 (7-8):1122-1132.
  30. 30.  Ashton RS, Akhilesh B, Supriya P, et al. Scaffolds based on degradable alginate hydrogels and poly (lactide-co-glycolide) microspheres for stem cell culture. Biomaterials, 2007, 28 (36):5518-5525.