• 1南京軍區(qū)福州總醫(yī)院口腔科(福州,350025);;
  • 2第四軍醫(yī)大學口腔醫(yī)院頜面外科;;
  • 3西安交通大學先進制造技術(shù)研究所;

【摘 要】 目的 探討三維重建仿真模型及計算機輔助設(shè)計個性化假體在修復下頜骨缺損中應用的可行性,并分析其臨床療效。 方法 2002年7月-2009年11月,收治9例下頜骨缺損患者。男4例,女5例;年齡19~55歲。均為下頜骨病變截除術(shù)后遺留大面積下頜骨缺損;其中頜骨良性病變8例,下頜牙齦癌1例。缺損部位:缺損跨越中線2例,包括髁狀突缺損4例,局限于一側(cè)且未累及顳下頜關(guān)節(jié)缺損3例。缺損范圍為9.0 cm × 2.5 cm~17.0 cm × 2.5 cm。術(shù)前行螺旋CT掃描后三維重建數(shù)字化頜骨模型,通過快速成型技術(shù)制備個性化假體。一期手術(shù)植入假體修復頜骨缺損,6個月后行二期手術(shù)種植義齒。 結(jié)果 一期手術(shù)中個性化假體就位順利,耗時10~23 min;延伸板與骨面貼合良好。術(shù)后切口Ⅰ期愈合,面部外形滿意,咬關(guān)系良好,張口時下頜偏斜糾正。二期手術(shù)時見種植體牢固無松動,基臺穿齦后與對頜牙位置關(guān)系良好,達到術(shù)前設(shè)計理想位置?;颊咭黄谛g(shù)后均獲隨訪,隨訪時間1~9年。末次隨訪時復查X線片以及頭顱后前位、顱基位、全口曲面斷層X線片顯示,個性化假體固定良好無松脫,外形對稱。 結(jié)論 三維重建仿真模型及計算機輔助設(shè)計個性化假體應用于下頜骨缺損修復中能提高手術(shù)精度,節(jié)省手術(shù)時間。

引用本文: 龔振宇 ,李國華,劉彥普,何黎升,周冰,李滌塵. 三維重建仿真模型及計算機輔助設(shè)計個性化假體在下頜骨缺損修復中的應用. 中國修復重建外科雜志, 2012, 26(1): 83-86. doi: 復制

版權(quán)信息: ?四川大學華西醫(yī)院華西期刊社《中國修復重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. technique in complex spine surgery. Arq Neuropsiquiatr, 2007, 65(2B): 443-445.
2. reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg, 2009, 38(2): 187-192.
3. miniscrews with a stereolithographic surgical guide based on cone beam computed tomography data: a pilot study. Int J Oral Maxillofac Implants, 2011, 26(4): 860-865.
4. mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study. J Oral Maxillofac.
5. Surg, 2010, 68(9): 2115-2121.
6. Mariani PB, Kowalski LP, Magrin J. Reconstruction of large defects postmandibulectomy for oral cancer using plates and myocutaneous flaps: a long-term follow-up. Int J Oral Maxillofac Surg, 2006, 35(5): 427-432.
7. Kimura A, Nagasao T, Kaneko T, et al. Adaquate fixation of plates for stability during mandibular reconstruction. J Craniomaxillofac Surg, 2006, 34(4): 193-200.
8. 鄭衛(wèi)國, 顏永年. 快速成形技術(shù)的原理、應用與發(fā)展. 計算機輔助設(shè)計與制造, 2001, (6): 3-5.
9. Lee JW, Lan PX, Kim B, et al. Fabrication and characteristic analysis of a poly (propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 1-9.
10. Paiva WS, Amorim R, Bezerra DA, et al. Aplication of the stereolithography.
11. 龔振宇, 劉彥普, 何黎升, 等. 用螺旋CT資料建立顱面三維模型. 口腔醫(yī)學研究, 2003, 19(1): 4-6.
12. 吳國鋒, 趙銥民, 葉曉蘭, 等. 單側(cè)眼眶部缺損修復的計算機輔助設(shè)計. 實用口腔醫(yī)學雜志, 2003, 19(5): 405-407.
13. 龔振宇, 劉彥普, 周樹夏, 等. 快速成型技術(shù)輔助顏面萎縮襯墊物設(shè)計. 第四軍醫(yī)大學學報, 2003, 24(13): 1189-1191.
14. Mankovich NJ, Samson D, Pratt W, et al. Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am, 1994, 27(5): 875-889.
15. 龔振宇, 劉彥普, 周樹夏, 等. 基于反求工程和快速原型的下頜骨缺損的修復. 中華口腔醫(yī)學雜志, 2004, 39(1): 9-11.
16. Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J, 2011, 30(3): 274-280.
17. Almasri R, Drago CJ, Siegel SC, et al. Volumetric misfit in CAD/CAM and cast implant frameworks: a university laboratory study. J Prosthodont,.
18. Wong RC, Tideman H, Merkx MA, et al. Review of biomechanical models used in studying the biomechanics of reconstructed mandibles. Int J Oral Maxillofac Surg, 2011, 40(4): 393-400.
19. Juergens P, Krol Z, Zeilhofer HF, et al. Computer simulation and rapid prototyping for the reconstruction of the mandible. J Oral Maxillofac Surg, 2009, 67(10): 2167-2170.
20. Leiggener C, Messo E, Thor A, et al. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular.
21. Morea C, Hayek JE, Oleskovicz C, et al. Precise insertion of orthodontic.
22. Zhou LB, Shang HT, He LS, et al. Accurate reconstruction of discontinuous.
23. Scalise JJ, Bryan J, Polster J, et al. Quantitative analysis of glenoid bone loss in osteoarthritis using three-dimensional computed tomography scans. J Shoulder Elbow Surg, 2008, 17(2): 328-335.
24. , 20(4): 267-274.
  1. 1. technique in complex spine surgery. Arq Neuropsiquiatr, 2007, 65(2B): 443-445.
  2. 2. reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg, 2009, 38(2): 187-192.
  3. 3. miniscrews with a stereolithographic surgical guide based on cone beam computed tomography data: a pilot study. Int J Oral Maxillofac Implants, 2011, 26(4): 860-865.
  4. 4. mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study. J Oral Maxillofac.
  5. 5. Surg, 2010, 68(9): 2115-2121.
  6. 6. Mariani PB, Kowalski LP, Magrin J. Reconstruction of large defects postmandibulectomy for oral cancer using plates and myocutaneous flaps: a long-term follow-up. Int J Oral Maxillofac Surg, 2006, 35(5): 427-432.
  7. 7. Kimura A, Nagasao T, Kaneko T, et al. Adaquate fixation of plates for stability during mandibular reconstruction. J Craniomaxillofac Surg, 2006, 34(4): 193-200.
  8. 8. 鄭衛(wèi)國, 顏永年. 快速成形技術(shù)的原理、應用與發(fā)展. 計算機輔助設(shè)計與制造, 2001, (6): 3-5.
  9. 9. Lee JW, Lan PX, Kim B, et al. Fabrication and characteristic analysis of a poly (propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 1-9.
  10. 10. Paiva WS, Amorim R, Bezerra DA, et al. Aplication of the stereolithography.
  11. 11. 龔振宇, 劉彥普, 何黎升, 等. 用螺旋CT資料建立顱面三維模型. 口腔醫(yī)學研究, 2003, 19(1): 4-6.
  12. 12. 吳國鋒, 趙銥民, 葉曉蘭, 等. 單側(cè)眼眶部缺損修復的計算機輔助設(shè)計. 實用口腔醫(yī)學雜志, 2003, 19(5): 405-407.
  13. 13. 龔振宇, 劉彥普, 周樹夏, 等. 快速成型技術(shù)輔助顏面萎縮襯墊物設(shè)計. 第四軍醫(yī)大學學報, 2003, 24(13): 1189-1191.
  14. 14. Mankovich NJ, Samson D, Pratt W, et al. Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am, 1994, 27(5): 875-889.
  15. 15. 龔振宇, 劉彥普, 周樹夏, 等. 基于反求工程和快速原型的下頜骨缺損的修復. 中華口腔醫(yī)學雜志, 2004, 39(1): 9-11.
  16. 16. Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J, 2011, 30(3): 274-280.
  17. 17. Almasri R, Drago CJ, Siegel SC, et al. Volumetric misfit in CAD/CAM and cast implant frameworks: a university laboratory study. J Prosthodont,.
  18. 18. Wong RC, Tideman H, Merkx MA, et al. Review of biomechanical models used in studying the biomechanics of reconstructed mandibles. Int J Oral Maxillofac Surg, 2011, 40(4): 393-400.
  19. 19. Juergens P, Krol Z, Zeilhofer HF, et al. Computer simulation and rapid prototyping for the reconstruction of the mandible. J Oral Maxillofac Surg, 2009, 67(10): 2167-2170.
  20. 20. Leiggener C, Messo E, Thor A, et al. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular.
  21. 21. Morea C, Hayek JE, Oleskovicz C, et al. Precise insertion of orthodontic.
  22. 22. Zhou LB, Shang HT, He LS, et al. Accurate reconstruction of discontinuous.
  23. 23. Scalise JJ, Bryan J, Polster J, et al. Quantitative analysis of glenoid bone loss in osteoarthritis using three-dimensional computed tomography scans. J Shoulder Elbow Surg, 2008, 17(2): 328-335.
  24. 24. , 20(4): 267-274.