目的 建立一套在腰椎MRI短時(shí)間反轉(zhuǎn)恢復(fù)(short time inversion recovery,STIR)序列圖像上評(píng)價(jià)腰椎間盤退變程度的改良STIR序列八級(jí)分級(jí)系統(tǒng),并檢驗(yàn)其效度及可重復(fù)性。 方法根據(jù)改良Pfirrmann八級(jí)分級(jí)系統(tǒng)及MRI檢查結(jié)果建立并優(yōu)化一套基于STIR序列圖像的腰椎間盤矢狀位分級(jí)系統(tǒng)。以2011年4月-2012年2月收治的60例腰椎間盤退行性變患者作為研究對(duì)象,其中男32例,女28例;年齡17~85歲,平均50歲。對(duì)每例研究對(duì)象5個(gè)腰椎間盤(L1、2~L5、S1)行T2加權(quán)像及STIR序列掃描。由3位分級(jí)者獨(dú)立分級(jí)后再共同分級(jí),分級(jí)者之間的效度及可重復(fù)性采用一致率和Kappa系數(shù)進(jìn)行分析。 結(jié)果共同分級(jí)示,所有椎間盤中無1級(jí)椎間盤,2級(jí)83個(gè)(27.7%),3 級(jí) 87個(gè)(29.0%),4級(jí) 66個(gè)(22.0%),5級(jí) 31個(gè)(10.3%),6級(jí) 15個(gè)(5.0%),7級(jí) 12個(gè)(4.0%),8級(jí) 6個(gè)(2.0%)。分級(jí)者自身達(dá)極強(qiáng)一致性(Kappa值0.822~0.952),組間達(dá)高度至極強(qiáng)一致性(Kappa值0.749~0.843)。分級(jí)者兩次分級(jí)與共同分級(jí)比較,分級(jí)一致率為82.7%~92.7%,平均85.6%;13.9%的分級(jí)差異發(fā)生于相鄰1個(gè)級(jí)別,0.5%為相鄰2個(gè)或以上 級(jí)別。 結(jié)論對(duì)于腰椎間盤退變程度可以采用改良STIR序列八級(jí)分級(jí)系統(tǒng),提高了不同退變程度椎間盤分級(jí)的準(zhǔn)確度。
引用本文: 潘文琦,王建,劉杰,陸焱,黃博. 腰椎間盤退行性變的改良MRI短時(shí)間反轉(zhuǎn)恢復(fù)序列八級(jí)分級(jí)系統(tǒng). 中國(guó)修復(fù)重建外科雜志, 2012, 26(12): 1430-1434. doi: 復(fù)制
1. | Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J, 2006, 15(6): 705-718. |
2. | Pfirrmann CW, Metzdorf A, Zanetti A, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine, 2001, 26(17): 1873-1878. |
3. | Griffith JF, Wang YX, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976), 2007, 32(24): E708-712. |
4. | Thompson JP, Pearce RH, Schechter MT, et al. Preliminary evaluation of ascheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976), 1990, 15(5): 411-415. |
5. | Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg (Br), 1986, 68(1): 36-41. |
6. | Landis RJ, Koch GG. The measurement of observer agreement for categorical data. Biometrics, 1977, 33(1): 159-174. |
7. | Saifuddin A, Renton P, Taylor BA. Effects on the vertebral end-plate of uncomplicated lumbar discography: an MRI study. Eur Spine J, 1998, 7(1): 36-39. |
8. | Kapoor SG, Huff J, Cohen SP. Systematic review of the incidence of discitis after cervical discography. Spine J, 2010, 10(8): 739-745. |
9. | Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest, 1996, 98(4): 996-1003. |
10. | Liebscher T, Haefeli M, Wuertz K, et al. Age-related variation in cell density of human lumbar intervertebral disc. Spine, 2011, 36(2): 153-159. |
11. | Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol, 2007, 189(4): 936-942. |
12. | Andersson GB. Epidemiology of low back pain. Acta Orthop Scand Suppl, 1998, 281: 28-31. |
13. | Peterson CK, Bolton JE, Wood AR. A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine, 2000, 25(2): 218-223. |
14. | Chiebler ML, Camerino VJ, Fallon MD, et al. In vivo and ex vivo magnetic resonance imaging evaluation of early disc degeneration with histopathologic correlation. Spine (Phila Pa 1976), 1991, 16(6): 635-640. |
- 1. Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J, 2006, 15(6): 705-718.
- 2. Pfirrmann CW, Metzdorf A, Zanetti A, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine, 2001, 26(17): 1873-1878.
- 3. Griffith JF, Wang YX, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976), 2007, 32(24): E708-712.
- 4. Thompson JP, Pearce RH, Schechter MT, et al. Preliminary evaluation of ascheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976), 1990, 15(5): 411-415.
- 5. Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg (Br), 1986, 68(1): 36-41.
- 6. Landis RJ, Koch GG. The measurement of observer agreement for categorical data. Biometrics, 1977, 33(1): 159-174.
- 7. Saifuddin A, Renton P, Taylor BA. Effects on the vertebral end-plate of uncomplicated lumbar discography: an MRI study. Eur Spine J, 1998, 7(1): 36-39.
- 8. Kapoor SG, Huff J, Cohen SP. Systematic review of the incidence of discitis after cervical discography. Spine J, 2010, 10(8): 739-745.
- 9. Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest, 1996, 98(4): 996-1003.
- 10. Liebscher T, Haefeli M, Wuertz K, et al. Age-related variation in cell density of human lumbar intervertebral disc. Spine, 2011, 36(2): 153-159.
- 11. Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol, 2007, 189(4): 936-942.
- 12. Andersson GB. Epidemiology of low back pain. Acta Orthop Scand Suppl, 1998, 281: 28-31.
- 13. Peterson CK, Bolton JE, Wood AR. A cross-sectional study correlating lumbar spine degeneration with disability and pain. Spine, 2000, 25(2): 218-223.
- 14. Chiebler ML, Camerino VJ, Fallon MD, et al. In vivo and ex vivo magnetic resonance imaging evaluation of early disc degeneration with histopathologic correlation. Spine (Phila Pa 1976), 1991, 16(6): 635-640.