【摘 要】 目的 體外分離培養(yǎng)人羊水間充質(zhì)干細(xì)胞(human amniotic fluid-derived mesenchymal stem cells,
HAFMSCs),觀察低溫凍存復(fù)蘇后HAFMSCs 生物學(xué)特征,為進(jìn)一步研究奠定理論基礎(chǔ)。 方法 取12 份自愿捐贈的孕
16 ~ 20 周羊水標(biāo)本,采用改良兩步法分離培養(yǎng)HAFMSCs,用含量不同的FBS、DMSO 凍存液凍存細(xì)胞,液氮凍存12 周
后42℃水浴復(fù)蘇,錐蟲藍(lán)染色檢測細(xì)胞存活率,MTT 法檢測細(xì)胞增殖速度并繪制生長曲線,流式細(xì)胞儀檢測凍存復(fù)蘇后
HAFMSCs 表型。對凍存復(fù)蘇后的HAFMSCs 進(jìn)行成脂、成骨誘導(dǎo)分化培養(yǎng),并分別采用油紅O、von Kossa 染色進(jìn)行鑒定;
實時熒光定量PCR 分析細(xì)胞凍存前后Oct-4、Nanog mRNA 表達(dá)差異。 結(jié)果 細(xì)胞凍存12 周后,不同的凍存方案對細(xì)
胞存活率影響有差異,優(yōu)化的凍存方案為DMEM/FBS/DMSO=50%/40%/10%。凍存復(fù)蘇后的HAFMSCs 呈漩渦狀排列,
生長曲線呈S 形,與凍存前細(xì)胞生長曲線相似。流式細(xì)胞儀檢測示凍存復(fù)蘇后細(xì)胞的MSCs 表型CD29、CD44、CD73、
CD90 為陽性,造血干細(xì)胞表型CD34、CD45 為陰性。成脂、成骨誘導(dǎo)21 d,油紅O、von Kossa 染色均呈陽性。實時熒光
定量PCR 檢測示凍存前后Oct-4、Nanog mRNA 表達(dá)水平差異無統(tǒng)計學(xué)意義(P gt; 0.05)。 結(jié)論 HAFMSCs 具有體外
增殖快、分化能力強的優(yōu)勢;并可耐受短期凍存,復(fù)蘇后細(xì)胞存活率高,生物學(xué)特征及分化潛能未發(fā)生明顯變化,凍存液
DMEM/FBS/DMSO=50%/40%/10% 是較好凍存方案。
引用本文: 王一茹 ,白靜,陳杰,劉麗鳳,王禹. 人羊水來源間充質(zhì)干細(xì)胞凍存后生物學(xué)特征研究. 中國修復(fù)重建外科雜志, 2012, 26(2): 141-145. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | 1 Prusa AR, Marton E, Rosner M, et al. OCT-4 expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod, 2003, 18(7): 1489-1493. 2 Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod, 2004, 19(6): 1450-1456. |
2. | Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev, 2007, 16(6): 931-952. |
3. | Sessarego N, Parodi A, Podesta M, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica, 2008, 93(3): 339-346. |
4. | Ghionzoli M, Cananzi M, Zani A, et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr Surg Int, 2010, 26(1): 79-84. |
5. | Baghaban Eslaminejad M, Jahangir S, Aghdami N. Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Arch Iran Med, 2011, 14(2): 96-103. |
6. | Shaw SW, David AL, De Coppi P, et al. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol, 2011, 23(2): 109-116. |
7. | Gekas J, Walther G, Skuk D, et al. In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage. Clin Exp Med, 2010, 10(1): 1-6. |
8. | Tsai MS, Hwang SM, Tsai YL, et al. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod, 2006, 74(3): 545-551. |
9. | In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4): 1548-1549. |
10. | De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cells with potential for therapy. Nat Biotechnol, 2007, 25(1): 100-106. |
11. | Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online, 2009, 18 Suppl 1: 17-27. |
12. | Decembrini S, Cananzi M, Gualdoni S, et al. Comparative analysis of the retinal potential of embryonic stem cells and amniotic fluid-derived stem cells. Stem Cells Dev, 2011, 20(5): 851-863. |
13. | Hilfiker A, Kasper C, Hass R, et al. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation. Langenbeck Arch Surg, 2011, 396(4): 489-497. |
14. | Hauser PV, De Fazio R, Bruno S, et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol, 2010, 177(4): 2011-2021. |
15. | Teodelinda M, Michele C, Sebastiano C, et al. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials, 2011, 32(15): 3689-3699. |
16. | 趙春華. 干細(xì)胞原理、技術(shù)與臨床. 北京: 化學(xué)工業(yè)出版社, 2006: 309-310. |
17. | 王有為, 韓之波, 嚴(yán)淑琳, 等. 人臍帶間充質(zhì)干細(xì)胞凍存復(fù)蘇后的生物學(xué)特征. 中國組織工程研究與臨床康復(fù), 2010, 14(10): 1729-1733. |
18. | Karlmark KR, Freilinger A, Marton E, et al. Activation of ectopic Oct- 4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med, 2005, 16(6): 987-992. |
- 1. 1 Prusa AR, Marton E, Rosner M, et al. OCT-4 expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod, 2003, 18(7): 1489-1493. 2 Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod, 2004, 19(6): 1450-1456.
- 2. Roubelakis MG, Pappa KI, Bitsika V, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev, 2007, 16(6): 931-952.
- 3. Sessarego N, Parodi A, Podesta M, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica, 2008, 93(3): 339-346.
- 4. Ghionzoli M, Cananzi M, Zani A, et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr Surg Int, 2010, 26(1): 79-84.
- 5. Baghaban Eslaminejad M, Jahangir S, Aghdami N. Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Arch Iran Med, 2011, 14(2): 96-103.
- 6. Shaw SW, David AL, De Coppi P, et al. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol, 2011, 23(2): 109-116.
- 7. Gekas J, Walther G, Skuk D, et al. In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage. Clin Exp Med, 2010, 10(1): 1-6.
- 8. Tsai MS, Hwang SM, Tsai YL, et al. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod, 2006, 74(3): 545-551.
- 9. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4): 1548-1549.
- 10. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cells with potential for therapy. Nat Biotechnol, 2007, 25(1): 100-106.
- 11. Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online, 2009, 18 Suppl 1: 17-27.
- 12. Decembrini S, Cananzi M, Gualdoni S, et al. Comparative analysis of the retinal potential of embryonic stem cells and amniotic fluid-derived stem cells. Stem Cells Dev, 2011, 20(5): 851-863.
- 13. Hilfiker A, Kasper C, Hass R, et al. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation. Langenbeck Arch Surg, 2011, 396(4): 489-497.
- 14. Hauser PV, De Fazio R, Bruno S, et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol, 2010, 177(4): 2011-2021.
- 15. Teodelinda M, Michele C, Sebastiano C, et al. Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials, 2011, 32(15): 3689-3699.
- 16. 趙春華. 干細(xì)胞原理、技術(shù)與臨床. 北京: 化學(xué)工業(yè)出版社, 2006: 309-310.
- 17. 王有為, 韓之波, 嚴(yán)淑琳, 等. 人臍帶間充質(zhì)干細(xì)胞凍存復(fù)蘇后的生物學(xué)特征. 中國組織工程研究與臨床康復(fù), 2010, 14(10): 1729-1733.
- 18. Karlmark KR, Freilinger A, Marton E, et al. Activation of ectopic Oct- 4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med, 2005, 16(6): 987-992.