• 四川大學(xué)華西醫(yī)院甲狀腺乳腺外科(四川成都 610041);

目的  總結(jié)電阻抗譜技術(shù)的基本原理及其在甲狀腺癌診斷方面的最新進(jìn)展。
方法  通過(guò)復(fù)習(xí)國(guó)內(nèi)外文獻(xiàn),對(duì)電阻抗譜技術(shù)在甲狀腺癌診斷上的應(yīng)用前景進(jìn)行綜述和分析。
結(jié)果  電阻抗譜是一種人體功能性成像技術(shù),其測(cè)量結(jié)果客觀,不易受人為因素影響,能有效診斷早期甲狀腺癌,并能與細(xì)針穿刺細(xì)胞學(xué)檢查結(jié)果互補(bǔ),提高甲狀腺癌的診斷準(zhǔn)確率,從而減少不必要的手術(shù)。
結(jié)論  在甲狀腺癌的診斷上,電阻抗譜技術(shù)有望成為診斷早期甲狀腺癌的一種新技術(shù),并作為一種輔助性臨床診斷方法輔助細(xì)針穿刺細(xì)胞學(xué)檢查對(duì)甲狀腺癌的診斷。

引用本文: 杜鎮(zhèn)鴻,朱精強(qiáng),魏濤,黃秋實(shí),朱信心. 電阻抗譜技術(shù)在甲狀腺癌診斷中的研究進(jìn)展. 中國(guó)普外基礎(chǔ)與臨床雜志, 2013, 20(9): 995-1000. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)普外基礎(chǔ)與臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Siegel R, Desantis C, Virgo K, et al. Cancer treatment and surv-ivorship statistics, 2012[J]. CA Cancer J Clin, 2012, 62(4):220-241.
2. Shrestha M, Crothers BA, Burch HB. The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration:a 10-year study from a single institution[J]. Thyroid,.
3. Tee YY, Lowe AJ, Brand CA, et al. Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules:a comprehensive literature review[J]. Ann Surg, 2007, 246(5):714-720.
4. Czerniec SA, Ward LC, Refshauge KM, et al. Assessment of breast cancer-related arm lymphedema—comparison of physical measurement methods and self-report[J]. Cancer Invest, 2010, 28(1):54-62.
5. Foster KR, Schwan HP. Dielectric properties of tissues and biolo-gical materials:a critical review[J]. Crit Rev Biomed Eng, 1989, 17(1):25-104.
6. Schwan HP. Electrical properties of tissue and cell suspensions[J]. Adv Biol Med Phys, 1957, 5:147-209.
7. Altmann M, Pliquett U, Suess R, et al. Prediction of lamb carcasscomposition by impedance spectroscopy[J]. J Anim Sci, 2004, 82(3):816-825.
8. Brown BH, Tidy JA, Boston K, et al. Relation between tissue structure and imposed electrical current flow in cervical neoplasia[J]. Lancet, 2000, 355(9207):892-895.
9. Cole KS, Cole RH. Dispersion and absorption in dielectricsⅠ. Alternating current characteristics[J]. J Chem Phys, 1941, 9(4):341-351.
10. Kwon HR, Han KA, Ku YH, et al. The effects of resistance training on muscle and body fat mass and muscle strength in type 2 diabetic women[J]. Korean Diabetes J, 2010, 34(2):101-110.
11. Stahn A, Terblanche E, Strobel G. Modeling upper and lower limb muscle volume by bioelectrical impedance analysis[J]. J Appl Physiol, 2007, 103(4):1428-1435.
12. Matthie JR. Bioimpedance measurements of human body composi-tion:critical analysis and outlook[J]. Expert Rev Med Devices, 2008, 5(2):239-261.
13. Nagai M, Komiya H, Mori Y, et al. Estimating visceral fat area by multifrequency bioelectrical impedance[J]. Diabetes Care, 2010, 33(5):1077-1079.
14. Medici G, Mussi C, Fantuzzi AL, et al. Accuracy of eight-polar bioelectrical impedance analysis for the assessment of total and appendicular body composition in peritoneal dialysis patients[J]. Eur J Clin Nutr, 2005, 59(8):932-937.
15. Siqueira Vassimon H, Jordao AA, Albuquerque de Paula FJ, et al. Comparison of bioelectrical impedance with skinfold thickness and X-ray absorptiometry to measure body composition in HIV-infected with lipodistrophy[J]. Nutr Hosp, 2011, 26(3):458-464.
16. Ott M, Fischer H, Polat H, et al. Bioelectrical impedance analysisas a predictor of survival in patients with human immunodeficiencyvirus infection[J]. J Acquir Immune Defic Syndr Hum Retrovirol,.
17. Aberg P, Geladi P, Nicander I, et al. Non-invasive and microinvasive electrical impedance spectra of skin cancer—a comparison between two techniques[J]. Skin Res Technol, 2005, 11(4):281-286.
18. Aberg P, Nicander I, Hansson J, et al. Skin cancer identification using multifrequency electrical impedance—a potential screening tool[J]. IEEE Trans Biomed Eng, 2004, 51(12):2097-2102.
19. Aberg P, Birgersson U, Elsner P, et al. Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma[J]. Exp Dermatol, 2011, 20(8):648-652.
20. Ching CT, Sun TP, Huang SH, et al. A preliminary study of the use of bioimpedance in the screening of squamous tongue cancer[J]. Int J Nanomedicine, 2010, 5(7):213-220.
21. Sun TP, Ching CS, Cheng CS, et al. The use of bioimpedance in the detection/screening of tongue cancer[J]. Cancer Epidemiol, 2010, 34(2):207-211.
22. González-Correa CA, Brown BH, Smallwood RH, et al. Virtual biopsies in Barrett’s esophagus using an impedance probe[J]. Ann N Y Acad Sci, 1999, 873(1):313-321.
23. Gonzalez-Correa CA, Brown BH, Smallwood RH, et al. Low frequency electrical bioimpedance for the detection of inflammationand dysplasia in Barrett’s oesophagus[J]. Physiol Meas, 2003, 24(2):291-296.
24. Keshtkar A, Salehnia Z, Somi MH, et al. Some early resultsrelated to electrical impedance of normal and abnormal gastric tissue[J]. Phys Med, 2012, 28(1):19-24.
25. Malich A, Boehm T, Facius M, et al. Use of electrical impedance scanning in the differentiation of sonographically suspicious and highly suspicious lymph nodes of the head-neck region[J]. Eur Radiol, 2002, 12(5):1114-1120.
26. Mentzel HJ, Malich A, Kentouche K, et al. Electrical impedance scanning-application of this new technique for lymph node evaluation in children[J]. Pediatr Radiol, 2003, 33(7):461-466.
27. Malich A, Fritsch T, Mauch C, et al. Electrical impedance scanning:a new technique in the diagnosis of lymph nodes in which malignancy is suspected on ultrasound[J]. Br J Radiol, 2001, 74(877):42-47.
28. Facius M, Malich A, Schneider G, et al. Electrical impedance scanning used in addition to ultrasound for the verification of submandibular and parotid lesions:initial results[J]. Invest Radiol, 2002, 37(8):421-427.
29. Stojadinovic A, Fields SI, Shriver CD, et al. Electrical impedancescanning of thyroid nodules before thyroid surgery:a prospective study[J]. Ann Surg Oncol, 2005, 12(2):152-160.
30. Nissan A, Peoples GE, Abu-Wasel B, et al. Prospective trial evaluating electrical impedance scanning of thyroid nodules beforethyroidectomy:final results[J]. Ann Surg, 2008, 247(5):843-853.
31. Zheng B, Tublin ME, Klym AH, et al. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy:a preliminary assessment[J]. Thyroid, 2013, 23(7):854-862.
32. Stojadinovic A, Nissan A, Gallimidi Z, et al. Electrical impedance scanning for the early detection of breast cancer in young women:preliminary results of a multicenter prospective clinical trial[J]. J Clin Oncol, 2005, 23(12):2703-2715.
33. Fuchsjaeger MH, Flöry D, Reiner CS, et al. The negative predi-ctive value of electrical impedance scanning in BI-RADS category Ⅳ breast lesions[J]. Invest Radiol, 2005, 40(7):478-485.
34. Assenheimer M, Laver-Moskovitz O, Malonek D, et al. TheT-SCAN technology:electrical impedance as a diagnostic tool for breast cancer detection[J]. Physiol Meas, 2001, 22(1):1-8.
35. Cherepenin V, Karpov A, Korjenevsky A, et al. A 3D electrical impedance tomography (EIT) system for breast cancer detection[J]. Physiol Meas, 2001, 22(1):9-18.
36. Vreugdenburg TD, Willis CD, Mundy L, et al. A systematic review of elastography, electrical impedance scanning,and digital infrared thermography for breast cancer screening and diagnosis[J]. Breast Cancer Res Treat, 2013, 137(3):665-676.
37. Pak D, Rozhkova N, Kireev AM, et al. Diagnosis of breast cancer using electrical impedance tomography[J]. Biomed Eng,2012,46(4):154-157.
38. da Silva JE, de Sá JP, Jossinet J. Classification of breast tissue by electrical impedance spectroscopy[J]. Med Biol Eng Comput, 2000, 38(1):26-30.
39. Saulnier GJ, Liu N, Tamma C, et al. An electrical impedance spectroscopy system for breast cancer detection[J]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007:4154-4157.
40. Raneta O, Ondru? D, Bella V. Utilisation of electrical impedance tomography in breast cancer diagnosis[J]. Klin Onkol, 2012, 25(1):36-41.
41. Zheng B, Lederman D, Sumkin JH, et al. A preliminary evaluation of multi-probe resonance-frequency electrical impedance based measurements of the breast[J]. Acad Radiol, 2011, 18(2):.
42. Morimoto T, Kimura S, Konishi Y, et al. A study of the electricalbio-impedance of tumors[J]. J Invest Surg, 1993, 6(1):25-32.
43. Laufer S, Ivorra A, Reuter VE, et al. Electrical impedance characterization of normal and cancerous human hepatic tissue[J]. Physiol Meas, 2010, 31(7):995-1009.
44. Arias LR, Perry CA, Yang L. Real-time electrical impedance detection of cellular activities of oral cancer cells[J]. Biosens Bioelectron, 2010, 25(10):2225-2231.
45. Keshtkar A, Keshtkar A, Smallwood RH. Electrical impedance spectroscopy and the diagnosis of bladder pathology[J]. Physiol Meas, 2006, 27(7):585-596.
46. Smallwood RH, Keshtkar A, Wilkinson BA, et al. Electrical impedance spectroscopy (EIS) in the urinary bladder:the effect of inflammation and edema on identification of malignancy[J]. IEEE Trans Med Imaging, 2002, 21(6):708-710.
47. Keshtkar A, Salehnia Z, Keshtkar A, et al. Bladder cancer dete-ction using electrical impedance technique (tabriz mark 1)[J]. Patholog Res Int, 2012, 2012(9):470101.
48. Halter RJ, Schned A, Heaney J, et al. Electrical impedance spectroscopy of benign and malignant prostatic tissues[J]. J Urol, 2008, 179(4):1580-1586.
49. Halter RJ, Hartov A, Heaney JA, et al. Electrical impedance spectroscopy of the human prostate[J]. IEEE Trans Biomed Eng, 2007, 54(7):1321-1327.
50. Halter RJ, Schned AR, Heaney JA, et al. Passive bioelectrical properties for assessing high- and low-grade prostate adenocarcinoma[J]. Prostate, 2011, 71(16):1759-1767.
51. Abdul S, Brown BH, Milnes P, et al. The use of electrical impe-dance spectroscopy in the detection of cervical intraepithelial neop-lasia[J]. Int J Gynecol Cancer, 2006, 16(5):1823-1832.
52. Lo CM, Keese CR, Giaever I. Monitoring motion of confluent cells in tissue culture[J]. Exp Cell Res, 1993, 204(1):102-109.
53. Bagnaninchi PO, Dikeakos M, Veres T, et al. Complex permittivity measurement as a new noninvasive tool for monitoringin vitro tissue engineering and cell signature through the detection of cell proliferation, differentiation, and pretissue formation[J]. IEEE Trans Nanobioscience, 2004, 3(4):243-250.
54. Hope TA, Iles SE. Technology review:the use of electrical impe-dance scanning in the detection of breast cancer[J]. Breast CancerRes, 2004, 6(2):69-74.
55. Wang T, Wang K, Yao Q, et al. Prospective study on combination of electrical impedance scanning and ultrasound in estimating risk of development of breast cancer in young women[J]. CancerInvest, 2010, 28(3):295-303.
56. -229.
57. , 9(1):20-25.
58. , 22(12):1251-1256.
  1. 1. Siegel R, Desantis C, Virgo K, et al. Cancer treatment and surv-ivorship statistics, 2012[J]. CA Cancer J Clin, 2012, 62(4):220-241.
  2. 2. Shrestha M, Crothers BA, Burch HB. The impact of thyroid nodule size on the risk of malignancy and accuracy of fine-needle aspiration:a 10-year study from a single institution[J]. Thyroid,.
  3. 3. Tee YY, Lowe AJ, Brand CA, et al. Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules:a comprehensive literature review[J]. Ann Surg, 2007, 246(5):714-720.
  4. 4. Czerniec SA, Ward LC, Refshauge KM, et al. Assessment of breast cancer-related arm lymphedema—comparison of physical measurement methods and self-report[J]. Cancer Invest, 2010, 28(1):54-62.
  5. 5. Foster KR, Schwan HP. Dielectric properties of tissues and biolo-gical materials:a critical review[J]. Crit Rev Biomed Eng, 1989, 17(1):25-104.
  6. 6. Schwan HP. Electrical properties of tissue and cell suspensions[J]. Adv Biol Med Phys, 1957, 5:147-209.
  7. 7. Altmann M, Pliquett U, Suess R, et al. Prediction of lamb carcasscomposition by impedance spectroscopy[J]. J Anim Sci, 2004, 82(3):816-825.
  8. 8. Brown BH, Tidy JA, Boston K, et al. Relation between tissue structure and imposed electrical current flow in cervical neoplasia[J]. Lancet, 2000, 355(9207):892-895.
  9. 9. Cole KS, Cole RH. Dispersion and absorption in dielectricsⅠ. Alternating current characteristics[J]. J Chem Phys, 1941, 9(4):341-351.
  10. 10. Kwon HR, Han KA, Ku YH, et al. The effects of resistance training on muscle and body fat mass and muscle strength in type 2 diabetic women[J]. Korean Diabetes J, 2010, 34(2):101-110.
  11. 11. Stahn A, Terblanche E, Strobel G. Modeling upper and lower limb muscle volume by bioelectrical impedance analysis[J]. J Appl Physiol, 2007, 103(4):1428-1435.
  12. 12. Matthie JR. Bioimpedance measurements of human body composi-tion:critical analysis and outlook[J]. Expert Rev Med Devices, 2008, 5(2):239-261.
  13. 13. Nagai M, Komiya H, Mori Y, et al. Estimating visceral fat area by multifrequency bioelectrical impedance[J]. Diabetes Care, 2010, 33(5):1077-1079.
  14. 14. Medici G, Mussi C, Fantuzzi AL, et al. Accuracy of eight-polar bioelectrical impedance analysis for the assessment of total and appendicular body composition in peritoneal dialysis patients[J]. Eur J Clin Nutr, 2005, 59(8):932-937.
  15. 15. Siqueira Vassimon H, Jordao AA, Albuquerque de Paula FJ, et al. Comparison of bioelectrical impedance with skinfold thickness and X-ray absorptiometry to measure body composition in HIV-infected with lipodistrophy[J]. Nutr Hosp, 2011, 26(3):458-464.
  16. 16. Ott M, Fischer H, Polat H, et al. Bioelectrical impedance analysisas a predictor of survival in patients with human immunodeficiencyvirus infection[J]. J Acquir Immune Defic Syndr Hum Retrovirol,.
  17. 17. Aberg P, Geladi P, Nicander I, et al. Non-invasive and microinvasive electrical impedance spectra of skin cancer—a comparison between two techniques[J]. Skin Res Technol, 2005, 11(4):281-286.
  18. 18. Aberg P, Nicander I, Hansson J, et al. Skin cancer identification using multifrequency electrical impedance—a potential screening tool[J]. IEEE Trans Biomed Eng, 2004, 51(12):2097-2102.
  19. 19. Aberg P, Birgersson U, Elsner P, et al. Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma[J]. Exp Dermatol, 2011, 20(8):648-652.
  20. 20. Ching CT, Sun TP, Huang SH, et al. A preliminary study of the use of bioimpedance in the screening of squamous tongue cancer[J]. Int J Nanomedicine, 2010, 5(7):213-220.
  21. 21. Sun TP, Ching CS, Cheng CS, et al. The use of bioimpedance in the detection/screening of tongue cancer[J]. Cancer Epidemiol, 2010, 34(2):207-211.
  22. 22. González-Correa CA, Brown BH, Smallwood RH, et al. Virtual biopsies in Barrett’s esophagus using an impedance probe[J]. Ann N Y Acad Sci, 1999, 873(1):313-321.
  23. 23. Gonzalez-Correa CA, Brown BH, Smallwood RH, et al. Low frequency electrical bioimpedance for the detection of inflammationand dysplasia in Barrett’s oesophagus[J]. Physiol Meas, 2003, 24(2):291-296.
  24. 24. Keshtkar A, Salehnia Z, Somi MH, et al. Some early resultsrelated to electrical impedance of normal and abnormal gastric tissue[J]. Phys Med, 2012, 28(1):19-24.
  25. 25. Malich A, Boehm T, Facius M, et al. Use of electrical impedance scanning in the differentiation of sonographically suspicious and highly suspicious lymph nodes of the head-neck region[J]. Eur Radiol, 2002, 12(5):1114-1120.
  26. 26. Mentzel HJ, Malich A, Kentouche K, et al. Electrical impedance scanning-application of this new technique for lymph node evaluation in children[J]. Pediatr Radiol, 2003, 33(7):461-466.
  27. 27. Malich A, Fritsch T, Mauch C, et al. Electrical impedance scanning:a new technique in the diagnosis of lymph nodes in which malignancy is suspected on ultrasound[J]. Br J Radiol, 2001, 74(877):42-47.
  28. 28. Facius M, Malich A, Schneider G, et al. Electrical impedance scanning used in addition to ultrasound for the verification of submandibular and parotid lesions:initial results[J]. Invest Radiol, 2002, 37(8):421-427.
  29. 29. Stojadinovic A, Fields SI, Shriver CD, et al. Electrical impedancescanning of thyroid nodules before thyroid surgery:a prospective study[J]. Ann Surg Oncol, 2005, 12(2):152-160.
  30. 30. Nissan A, Peoples GE, Abu-Wasel B, et al. Prospective trial evaluating electrical impedance scanning of thyroid nodules beforethyroidectomy:final results[J]. Ann Surg, 2008, 247(5):843-853.
  31. 31. Zheng B, Tublin ME, Klym AH, et al. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy:a preliminary assessment[J]. Thyroid, 2013, 23(7):854-862.
  32. 32. Stojadinovic A, Nissan A, Gallimidi Z, et al. Electrical impedance scanning for the early detection of breast cancer in young women:preliminary results of a multicenter prospective clinical trial[J]. J Clin Oncol, 2005, 23(12):2703-2715.
  33. 33. Fuchsjaeger MH, Flöry D, Reiner CS, et al. The negative predi-ctive value of electrical impedance scanning in BI-RADS category Ⅳ breast lesions[J]. Invest Radiol, 2005, 40(7):478-485.
  34. 34. Assenheimer M, Laver-Moskovitz O, Malonek D, et al. TheT-SCAN technology:electrical impedance as a diagnostic tool for breast cancer detection[J]. Physiol Meas, 2001, 22(1):1-8.
  35. 35. Cherepenin V, Karpov A, Korjenevsky A, et al. A 3D electrical impedance tomography (EIT) system for breast cancer detection[J]. Physiol Meas, 2001, 22(1):9-18.
  36. 36. Vreugdenburg TD, Willis CD, Mundy L, et al. A systematic review of elastography, electrical impedance scanning,and digital infrared thermography for breast cancer screening and diagnosis[J]. Breast Cancer Res Treat, 2013, 137(3):665-676.
  37. 37. Pak D, Rozhkova N, Kireev AM, et al. Diagnosis of breast cancer using electrical impedance tomography[J]. Biomed Eng,2012,46(4):154-157.
  38. 38. da Silva JE, de Sá JP, Jossinet J. Classification of breast tissue by electrical impedance spectroscopy[J]. Med Biol Eng Comput, 2000, 38(1):26-30.
  39. 39. Saulnier GJ, Liu N, Tamma C, et al. An electrical impedance spectroscopy system for breast cancer detection[J]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007:4154-4157.
  40. 40. Raneta O, Ondru? D, Bella V. Utilisation of electrical impedance tomography in breast cancer diagnosis[J]. Klin Onkol, 2012, 25(1):36-41.
  41. 41. Zheng B, Lederman D, Sumkin JH, et al. A preliminary evaluation of multi-probe resonance-frequency electrical impedance based measurements of the breast[J]. Acad Radiol, 2011, 18(2):.
  42. 42. Morimoto T, Kimura S, Konishi Y, et al. A study of the electricalbio-impedance of tumors[J]. J Invest Surg, 1993, 6(1):25-32.
  43. 43. Laufer S, Ivorra A, Reuter VE, et al. Electrical impedance characterization of normal and cancerous human hepatic tissue[J]. Physiol Meas, 2010, 31(7):995-1009.
  44. 44. Arias LR, Perry CA, Yang L. Real-time electrical impedance detection of cellular activities of oral cancer cells[J]. Biosens Bioelectron, 2010, 25(10):2225-2231.
  45. 45. Keshtkar A, Keshtkar A, Smallwood RH. Electrical impedance spectroscopy and the diagnosis of bladder pathology[J]. Physiol Meas, 2006, 27(7):585-596.
  46. 46. Smallwood RH, Keshtkar A, Wilkinson BA, et al. Electrical impedance spectroscopy (EIS) in the urinary bladder:the effect of inflammation and edema on identification of malignancy[J]. IEEE Trans Med Imaging, 2002, 21(6):708-710.
  47. 47. Keshtkar A, Salehnia Z, Keshtkar A, et al. Bladder cancer dete-ction using electrical impedance technique (tabriz mark 1)[J]. Patholog Res Int, 2012, 2012(9):470101.
  48. 48. Halter RJ, Schned A, Heaney J, et al. Electrical impedance spectroscopy of benign and malignant prostatic tissues[J]. J Urol, 2008, 179(4):1580-1586.
  49. 49. Halter RJ, Hartov A, Heaney JA, et al. Electrical impedance spectroscopy of the human prostate[J]. IEEE Trans Biomed Eng, 2007, 54(7):1321-1327.
  50. 50. Halter RJ, Schned AR, Heaney JA, et al. Passive bioelectrical properties for assessing high- and low-grade prostate adenocarcinoma[J]. Prostate, 2011, 71(16):1759-1767.
  51. 51. Abdul S, Brown BH, Milnes P, et al. The use of electrical impe-dance spectroscopy in the detection of cervical intraepithelial neop-lasia[J]. Int J Gynecol Cancer, 2006, 16(5):1823-1832.
  52. 52. Lo CM, Keese CR, Giaever I. Monitoring motion of confluent cells in tissue culture[J]. Exp Cell Res, 1993, 204(1):102-109.
  53. 53. Bagnaninchi PO, Dikeakos M, Veres T, et al. Complex permittivity measurement as a new noninvasive tool for monitoringin vitro tissue engineering and cell signature through the detection of cell proliferation, differentiation, and pretissue formation[J]. IEEE Trans Nanobioscience, 2004, 3(4):243-250.
  54. 54. Hope TA, Iles SE. Technology review:the use of electrical impe-dance scanning in the detection of breast cancer[J]. Breast CancerRes, 2004, 6(2):69-74.
  55. 55. Wang T, Wang K, Yao Q, et al. Prospective study on combination of electrical impedance scanning and ultrasound in estimating risk of development of breast cancer in young women[J]. CancerInvest, 2010, 28(3):295-303.
  56. 56. -229.
  57. 57. , 9(1):20-25.
  58. 58. , 22(12):1251-1256.
  • 上一篇

    納米碳甲狀旁腺負(fù)顯影辨認(rèn)保護(hù)技術(shù)在甲狀腺癌手術(shù)中的應(yīng)用△